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ABSTRACT

A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompress-
ible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain
is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal in-
tegral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while
a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes
(cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid
flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial
computational fluid dynamics code.

Key Words: nodal method, arbitrary geometries, Navier-Stokes equations, incompressible flow

1. INTRODUCTION

Nodal methods have been developed for a wide range of problems of interest to nuclear scientists and en-
gineers, including the Navier-Stokes equations, the convection-diffusion equation, and the multi-group neu-
tron diffusion equations [1] [5] [8] [16]. The superior discretization scheme of the nodal methods provides
an advantage over many conventional numerical methods in that nodal methods, by using coarse meshes,
typically require less CPU time to achieve a given accuracy. However, nodal methods that depend upon
a transverse integration step to reduce the governing partial differential equation(s) into ordinary differen-
tial equations, such as the nodal integral method, are limited to domains formed by the union of rectangular
nodes (cells). Although nodal methods have been developed for specific non-rectangular geometries — such
as cylindrical or hexagonal — only those based on the boundary fitted coordinate technique are applicable to
domains of arbitrary geometry [7]. Hence, a numerical scheme that can relax the restriction on the geometry
of the domain without sacrificing the nodal efficiency is desirable.

�

Also, Computational Science and Engineering Program



Allen J. Toreja, Rizwan-uddin

Toreja and Rizwan-uddin [15] have recently proposed a hybrid nodal-integral/finite-analytic method (NI-
FAM), which was successfully applied to steady-state and time-dependent convection-diffusion problems
in arbitrary geometries. In this method, the conventional nodal integral method (NIM) [1] [8] is coupled
to a finite analytic approach. Developed by Roscoe [10] and further extended by Chen [3] and others, the
finite analytic approach introduces certain approximations so as to reduce the partial differential equation(s)
into sub-problems (ordinary differential equations) that can be solved analytically. This particular step of
the finite analytic approach achieves the same objective as the transverse-integration procedure of the nodal
integral approach, and is not limited to regular geometries. The analytical solutions of these sub-problems
are then used to formulate the algebraic representations of the governing partial differential equation(s) [3].

In the hybrid NI-FAM of Toreja and Rizwan-uddin [15], the computational domain is first divided into
rectangular and triangular nodes (cells). The triangular nodes (cells) are restricted to the domain boundaries
that are not parallel to the � or � axes. The conventional NIM is then applied to the interfaces between
rectangular nodes (cells) while the finite analytic approach is applied to the triangular-rectangular node
(cell) interfaces. Since the discrete variables in the NIM are the transverse-integrated (or surface-averaged
or edge-averaged) quantities along the edges of the rectangular nodes (cells), the finite analytic approach
must be developed in terms of transverse-integrated quantities, as well. This allows for the imposition of
continuity conditions on the interfaces between triangular and rectangular nodes (cells).

Motivated by the success of the NI-FAM applications to the convection-diffusion equation, the hybrid
NI-FAM is developed here to solve the time-dependent, incompressible Navier-Stokes equations in two-
dimensional arbitrary geometries. This particular development of the NI-FAM will extend the efficiency of
existing nodal methods for fluid flow applications [1] [16] [19] to complex geometries without sacrificing
the nodal efficiency. Furthermore, the potential combination of the NI-FAM for the Navier-Stokes equations
with the NI-FAM for the convection-diffusion equation will allow the nodal method to accurately and ef-
ficiently simulate a wide range of coupled fluid flow and heat transfer problems. Applications of this type
will be particularly useful in coupled neutronic/thermal-hydraulic nodal analyses for the next generation of
nuclear reactors.

2. FORMALISM

2.1. The Time-Dependent Incompressible Navier-Stokes Equations

The two-dimensional, time-dependent, incompressible Navier-Stokes momentum and Poisson pressure equa-
tions are �������� � ���� � �
	 ���� � �� � ������ � � � ������ � �������� � �� � �
��� (1)� 	��� � � � 	� � �
	 � 	� � ��� � ��� 	� � � � ��� 	� � � � � �� � �� � ����� (2)

� �� � � � �� � � � � � �� � � � � � ���� � � � � � � 	� � � � �"! � ���� �
� 	� � � � � ���� � � � ���� � (3)

where � is the viscosity, � is the density,
�

and 	 are the velocities in the � and � directions, respectively,
and, ��� and ��� are the body forces in the � and � directions respectively. The Poisson pressure equation
is derived through the combination of the two momentum equations and the application of the continuity
equation [3] [11]. The Poisson pressure equation provides an explicit equation for the pressure, and for the
purposes of this paper, Eqs. (1)-(3) will be referred to as the “Navier-Stokes equations”.
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Before starting the development of the hybrid NI-FAM for the incompressible Navier-Stokes equations, the
momentum equations are rewritten in a modified form by subtracting from both sides of the equations linear
convection terms based on the constant velocities,

���
and 	 � ,������ � � ���� � � 	 ���� � � � � ���� � � 	 � ���� � �� � ������ � � � ������ � � � ���� � �� � �
��� � � � ���� � � 	 � ���� � (4)� 	��� � � � 	� � �
	 � 	� � � � � � 	� � � 	 � � 	� � ��� � � � 	� � � � � � 	� � � � � �� � �� � �
� � � � � � 	� � � 	 � � 	� � � (5)

As in the schemes based on delayed coefficients [17], when discretizing Eqs. (4)-(5),
���

and 	 � will be
defined as node-averaged constant velocities based on velocity values from the previous time step. Explicit
expressions for these constants are given later.

Use of the Poisson pressure equation and the introduction of the convection terms based on the node-
averaged velocities from the previous time step lead to a nodal scheme in terms of primitive variables
(
�
� 	 � � ) as well as node interior solutions that are symmetric in the � and � directions. Furthermore, instead

of linear or quadratic solutions [1] [19], these solutions are of a linear + exponential form. This formula-
tion of the nodal integral method for the incompressible Navier-Stokes equations for regular geometries is
developed in [16].

2.2. The Hybrid NI-FAM for the Time-Dependent Incompressible Navier-Stokes Equations

First, the time axis is discretized with a constant time interval of !�� . The discretization of the space-
time domain with an arbitrarily-shaped, two-dimensional, spatial domain then proceeds by dividing the
region into parallelepiped and wedge-shaped space-time nodes. The wedge-shaped nodes are restricted
to the spatial boundaries that are not parallel to the � or � axes. For the parallelepiped nodes, a local
coordinate system is defined with the origin at the center of the node. For the wedge-shaped nodes, a
local coordinate system is defined with the origin at the center of the diagonal edge. Schematic diagrams
of one type of wedge-shaped space-time node and a parallelepiped space-time node along with their local
coordinate system and associated discrete variables are shown in Figs. 1-2. The definitions of the discrete
variables are given later.

Figure 1. Wedge-shaped space-time node Figure 2. Parallelepiped space-time node

In the NI-FAM, the set of equations for the unknown discrete variables associated with the interface be-
tween two adjacent parallelepiped nodes are derived using the nodal integral method (NIM) of Wang [16].
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For the interface between a wedge-shaped node and a parallelepiped node, a new type of finite analytic
method, motivated by the hybrid method for the convection-diffusion equation [12], is developed here. As
in the NIM, the procedure in the new hybrid method for the wedge-shaped-parallelepiped-node interface
consists of three major steps. In step one, the governing partial differential equations are reduced to a set of
ordinary differential equations. The second step is to analytically solve these ordinary differential equations
and eliminate intermediate unknowns. In the third step, the algebraic difference relations for the discrete
variables on the interface between the two different types of nodes are obtained by imposing continuity of
the flux, i.e., by equating the derivatives from both sides of the interface.

Step 1

The formal derivation begins by approximating the velocities and pressure over the wedge-shaped node as
a sum of unknown (single-variable) functions and a constant,��� � � � � ������ � � � � � � � � � � � � ����� ��� � ��	

(6)	 � � � � � �
���� 	�� � � � �
	�� � � � �
	 ��� ��� ��	 	 (7)� � � � � � �� � � � � � � � � � � � � � 	
� (8)

The approximations in Eqs. (6)-(8) are similar to those made in the finite analytic method of Chen [3].
Anticipating that the finite analytic approach for the wedge-shaped node will be coupled with the NIM for the
parallelepiped node, the functions,

� � � � � , � � � � � , ����� ���
, are approximations to single variable transverse-

averaged velocities in the wedge-shaped node. These functions respectively correspond to the transverse-
integrated functions, �

� � � � � � , �� � � � � � , �� � � � �
�
, of a parallelpiped node. The functions for the 	 velocity

and pressure in Eqs. (7)-(8) are similarly defined. As will be shown, the finite analytic approach of the
wedge-shaped node is developed in terms of these approximate transverse-integrated variables so that the
finite analytic approach of the wedge-shaped node can be coupled with the nodal approach of the adjacent
parallelepiped node.

The finite analytic approximations are first substituted into the
�

momentum equation, Eq. (4), which leads
to the following ordinary differential equation,

� �� ��� �� � � � � � � �� � � � � � � � � �� � � 	 � � � �� � � � ���
� � ����� � � � � � �
� (9a)

where
� � � � � � � �
� � � � � �� � �
	 � � �� � � � � � � �� � � 	 � � � �� � � �� � � �� � � ��� � (9b)

The term, � � , in Eq. (9a) resembles a “source/sink-like” term. Motivated by a similar step performed in the
NI-FAM for the convection-diffusion equation [14], the following approximation is introduced,

� � � � � � � �
��� ��� � � � � ��� � � � � ��� � � ��� � (10)

where � �
� � � , � � � � � , and � �

� �
�
, are unknown functions that are referred to as the “sub-source terms” for

the
�

momentum equation. (As a matter of convenience, the sub-source term, � �
� ���

, is subtracted, rather
than added, for it makes the right hand side of Eq. (14a) positive rather than negative.) Substitution of
Eq. (10) into Eq. (9a) leads to the following equation,

� ����� �
�
� � � � � � � � ��� � � � � ��� � � �
� ��� ��� � � � � � �� � � � � � � � � � �� � � � � � � � � �� � � 	 � � � �� � � (11)
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Equation (11) is then split into three ordinary differential equations. Using the boundary/initial condititions
associated with the wedge-shaped node of Fig. 1, the three ordinary differential equations and associated
boundary/initial conditions are � � ��� �� � � � � � � � �� � � � � � � � (12a)� � � � ��� � � ��� �

(12b)� � � � ��� � � � � �
(12c)� � � � �� � � � 	 � � � �� � � � � � � � (13a)� � � � � ��� � � � � �
(13b)� � � � ��� � � � � �
(13c)

and � ���
� � � � � � �
� (14a)����� � � � � � � � � �

� (14b)

This same procedure is applied to Eq. (5), resulting in the corresponding ordinary differential equations for
the 	 velocity, which have forms similar to Eqs. (12a)-(14b). The same procedure is again applied to the
Poisson pressure equation, which yields the following ordinary differential equations,

� �� � � � �� � � �	� � � � (15a)� � � � ��� � � � � �
(15b)� � � � ��� � � � � �
(15c)

� �� � � � �� � � ��
 � � � (16a)� � � � � ��� � � � � �
(16b)� � � � ��� � � � � �
(16c)

where the functions, � � � � and 
 � � � are the sub-source terms for the Poisson pressure equation.

For the wedge-shaped node of Fig. 1, the formal definitions of the discrete variables associated with the
transverse-integrated

�
velocity are� � � � �� � � ��� � ��� � ��� � � � � ��� � �
� � � � � � (17)

� � � � �� � � ��� �  �� � ��� � ��� � � � ��� � � � � � (18)

� � � � �� � � ��� � ��� � �
� � � � � �� � � � � � � � � � (19)

and � � � � �! � � ��� � ���
�

� �
� � � � � � � � � � � � � � � � (20)
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The discrete variables associated with the transverse-integrated 	 velocity and pressure are similarly defined.
The single variable functions in the finite analytic approximations correspond to the transverse-integrated
functions of the NIM, allowing the use of the surface-averaged velocities and pressures in the boundary
conditions of the above differential equations. Using the transverse-integrated variables in the boundary
conditions thus facilitates the coupling of the finite analytic approach of the wedge-shaped node with the
nodal approach of the adjacent parallelepiped node. In addition, the boundary conditions at � ��� and � ���
use a new set of transverse-integrated variables, namely,

� � �
, 	 � � , � � � . These transverse-integrated variables

represent the velocities and pressure averaged over the diagonal edge of the wedge-shaped node.

Step 2

As outlined, the second major step of the NI-FAM for the Navier-Stokes equations is to analytically solve the
ordinary differential equations. In each of the ordinary differential equations, the right hand side consists of
an unknown inhomogeneous term. Using a similar procedure from the NIM, these unknown inhomogeneous
terms are expanded in Legendre polynomials and trucated at the zeroth order. Hence, the sub-source terms
from Eq. (12a), Eq. (13a), Eq. (14a), Eq. (15a), and Eq. (16a) — � � � � � , � � � � � , � � � �
� , � � � � , 
 � � � — are
replaced with the sub-source constants, � �	 , � �	 , � �	 , � 	 , and 
 	 , respectively. These sub-source constants
are not explicitly specified, and are eliminated later.

The second-order differential equations for the transverse-integrated velocities (Eq. (12a), Eq. (13a), and the
corresponding 	 velocity equations) lead to solutions of linear+exponential form,

��� ��� � ��� 	 � ���	� � � � ��
����� � � �� � � (21)

where
�

is either
�

or 	 , � is either � or � ,
�

is either � or � , and � 	 and � 
 are constants of integration.
The first-order velocity differential equations (Eq. (14a), and the corresponding 	 velocity equation) lead to
a simple linear solution of the following form,

� � � ��� ��� 	 � � �	 � (22)

where � 	 is the constant of integration and the definitions of the previous case apply here as well. The two
remaining second order differential equations for the pressure (Eq. (15a), Eq. (16a)) lead to second-order
polynomial solutions for the following form,��� ��� � ��� 	 � ��
 � � ��� 	! � �

(23)

where � 	 and ��
 are the constants of integration, � is � or 
 , and
�

is � or � .

The constants of integration are eliminated by imposing the initial and boundary conditions. Hence, the
local node interior solutions are written in terms of transverse-integrated variables along the node edges
(the discrete unknowns) as well as the unknown sub-source terms. Assuming that the transverse-integrated
variables along the diagonal edge of the wedge-shaped node are known (Dirichlet boundary conditions), the
(eight) analytical solutions corresponding to the forms in Eqs. (21)-(23) contain eight unknown transverse-
integrated variables (

� � �
,
� � �

,
� � �

, 	 � � , 	 � � , 	 � � ,
� � �

,
� � �

) and eight unknown sub-source constants ( � �	 ,
� �	 , � �	 , ���	 , � �	 , � �	 , � 	 , 
 	 ). As part of the second step in the development of the NI-FAM, the unknown
sub-source constants must be eliminated in favor of the unknown transverse-integrated discrete variables.
Once the unknown sub-source constants have been eliminated, continuity conditions will be imposed (in
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the final step) between the wedge-shaped node and the adjacent parallelepiped nodes thereby yielding the
necessary algebraic difference relations.

To eliminate the unknown sub-source constants, two types of constraints are introduced. These constraints
are, in principle, the same as those applied in the conventional NIM, namely satisfying each governing
equation over the node in an integral sense and imposing the uniqueness of node-averaged quantities. The
first type of constraint uses an averaging operator that is defined as

� � � � � �! � � �  �� � 
	

� �
 �
	 � � � � � � �
� � � � � � � � (24)

This operator yields the average value of
� � � � � � ��� over the wedge-shaped node. This operator is first applied

to the
�

momentum equation, Eq. (9b). To carry out the integration, the sub-source terms in Eq. (10) are
replaced with the appropriate sub-source constants, and the average of the convection terms of the form,��� ���� � , is approximated by the product of the averages, which is known to be a second order approximation
[8]. For Eq. (9b), the averaging operator yields the following

� � 	 � � � � � � � � � � � �
� � � � 	 	 � 	 � � � � � � � � � �

� � � � �	 � � �	 ��� �	 � �� � � � � � � � �
� � � � � � �� � (25)

where
� 	

and 	 	 are the node-averaged
�

and 	 velocities from the current time step, respectively. These
particular node-averaged velocities result from the approximation of the convection terms in the averaging
operator. The averaging operator is then applied to the the 	 momentum and pressure equations which
yield the corresponding 	 momentum and pressure analogs of Eq. (25). The expressions obtained from
the averaging operator can be interpreted as the Navier-Stokes equations averaged over the wedge-shaped
space-time node.

The second type of constraint used to eliminate the sub-source constants requires that for each wedge-
shaped node there should be a unique node-averaged

�
velocity, 	 velocity, and pressure. Therefore, for the�

velocity, the uniqueness constraints are

�� ��	 � � � � � � � � �
�

��
� �

����� �
� � �
� (26a)

�� 
	

� �
� � � � � � � � �

�

 �
� �

����� ��� � �
� (26b)

Similar uniqueness constraints are defined for the 	 velocity and the pressure.

Using these eight constraint equations, the unknown sub-source terms are eliminated. Thus, the local interior
node solutions can then be expressed solely in terms of the initial and boundary conditions along the node
edges.

Step 3

In the third and final step of the development, the algebraic difference equations for the transverse-integrated
variables on the interface between the two types of nodes are developed. In Fig. 3, the projections of a
wedge-shaped node and the adjacent parallelepiped nodes onto the � � plane are shown. For the wedge-
shaped node,

���
��� � , and the adjacent parallelepiped node on the right,

��� � � ��� � , the transverse-integrated
variables on the interface between the two nodes are

� � ���	 
 , 	 � ���	 
 , and
� � ���	 
 , where the subscripts are the spatial
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indices. The algebraic difference equation for the variable,
� � �� 	 
 , is derived by imposing the � 
 continuity

condition, i.e., by taking the derivative of the solution in the wedge-shaped node,
� � 	 ��	 
 � � � , evaluating it at

the right edge, � ��� ��	 
 , and equating it to the derviative of the corresponding solution in the parallelepiped
node on the right of the wedge-shaped node,

� � �� � 
 	 
 , evaluated on the left edge, � � � � � � 
 	 
 . That is,

� � � 	 � 	 
 � � �� � ���� ��� ����� 	 � � � � �� � 
 	 
 � � �� � ����� ��� � �
������ 	 � (27)

where the transverse-integrated function,
� � �� � 
 	 
 � � � , is obtained through the application of the NIM to the

parallepiped node [16]. Solving Eq. (27) for the transverse-integrated variable,
� � ���	 
 , yields an algebraic

difference equation of the following form,� � ���	 
 � ����� 
��� 	 
�� � � ���	 
 � ����� � �� 	 
�� � � �� � 
 	 
 � ������� �� 	 
�� � � ���	 
 	 �
� � � ��� ���	 
�� � � �� � 
 	 
 	 � � � � ��� �� 	 
�� � � ���	 
 	 � � 
 � � � �! ���	 
�� � � �� � 
 	 
 	 � � 
 (28)

where the coefficients, � ��" ���	 
 �$# � � � ! �
% � � � ��& � , are constants that depend on the node dimensions, viscosity

and the nodal velocities from the previous timp step,
� �

and 	 � . The expressions for the coefficients, � ��" ���	 
 ,
are given in [14]. The third subscript, ' , which appears in the transverse-integrated variable,

� � ���	 
 	 � refers to

the current time step. Repeating this procedure for the transverse-integrated variables, 	 � ���	 
 and
� � ���	 
 , yields the

corresponding algebraic difference equations for these variables. Furthermore, repeating this procedure in
the vertical direction for the wedge-shaped node,

���
��� � , and the adjacent parallelepiped node on the bottom,���

��� � � � , yields the algebraic equations for the transverse-integrated variables,
� � ���	 
 � 
 , 	 � ���	 
 � 
 , and

� � ���	 
 � 
 .
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Figure 3. Projection of wedge-shaped space-time node,
���
��� � , and its adjacent parallelepiped nodes,

��� �� ��� � and
���
��� � � � , onto the � � plane.

Since the differential equations for
� ��� �
�

and 	 � � �
� are first order, the algebraic difference equations for the
transverse-integrated variables,

� � ���	 
 	 � and 	 � ���	 
 	 � , are obtained by simply evaluating the wedge-shaped node
solutions,

� � 	 ��	 
 � �
� and 	 � 	 ��	 
 � �
� , at
� � � � . Defining

� � 	 ��	 
 � � � � � � � � � ���	 
 	 � and
��� 	 ��	 
 � � � � � � � � � �� 	 
 	 � � 
 ,

the difference equation for the transverse-integrated variable,
� � ���	 
 	 � , is found to be of the following form,� � ���	 
 	 � � ��SG� 
����	 
T� � � ���	 
 	 � � 
 � ��SG� � ���	 
T� � � ���	 
 � ��SG��� ���	 
T� � � ���	 


� � SG��� ���	 
 � � � �� � 
 	 
 � � SG�!� ���	 
 � � � ���	 
 � � SG�� ���	 
 � � � �� 	 
 � � SG�!U �� 	 
 � � � � �� 	 � 	 
 	 � (29)
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where the coefficients, S ��" ���	 
 �$# � � � ! �
% � � ��� � , are constants that depend on the node dimensions, viscosity

and the nodal velocities,
� �

, 	 � ,
� 	

, and 	 	 . The expressions for the coefficients, S ��" ���	 
 , are also given

in [14]. Since the coefficients, S ��" �� 	 
 �$# � � � ! �
% � � ��� � , are dependent on node-averaged velocities of the
current timestep, these coefficients must be evaluated every time the transverse-integrated discrete variables
are updated. The equation for the transverse-integrated variable, 	 � ���	 
 	 � , has a form similar to Eq. (29).

The node-averaged velocities from the previous time step,
� �

and 	 � , are introduced in Eqs. (4) and (5).
The node-averaged velocities at the current time step,

� 	
and 	 	 , are introduced in Eq. (25). These node-

averaged velocities also appear in the application of the conventional NIM to the parallelepiped space-time
node [14] [16]. In the conventional NIM, the node-averaged

�
velocity at the current ( ' ) time step,

� 	
,

for the parallelepiped node,
���
��� � ' � is defined as the perimeter-based average of the four edge-averaged

velocities, � 	��	 
 	 � � � ! � � 	 
 	 � � � � ���	 
 	 � � � ! � � � 
 	 
 	 � � � � �� � 
 	 
 	 � � � ! � ��	 
 	 � � � � ���	 
 	 � � � ! � � 	 
 � 
 	 � � � � ���	 
 � 
 	 �! � ��	 
 	 � �"! � � � 
 	 
 	 � �"! � ��	 
 	 � �"! � � 	 
 � 
 	 � � (30)

The node-averaged velocity from the previous ( ' � � ) time step,
� �

, has the same form as Eq. (30) with the
subscript, ' , replaced by ' � � . Furthermore, the node-averaged velocities, 	 	 and 	 � , are similarly defined.
To maintain consistency with the NIM, a perimeter-based average is also used to define the node-averaged
velocities for the wedge-shaped node. Thus, for the wedge-shaped node of Fig. 1, the node-averaged

�
velocity at the current time step,

� 	
is defined as� 	��	 
 	 � � �! � ��	 
 	 � �"! � ��	 
 	 � � � � ! � ��	 
 	 � � � � � ! � ��	 
 	 � � ���

� � ! � ��	 
 	 � � � � ���	 
 	 � � � ! � ��	 
 	 � � � � �� 	 
 � 
 	 � � � � � ! � ��	 
 	 � � � � � ! � ��	 
 	 � � � � � � �� 	 
 	 ��� � (31)

Likewise, the node-averaged
�

velocity of the wedge-shaped node from the previous ( ' � � ) time step,
� �

,
has the same form as Eq. (31) with the subscript, ' , replaced by ' � � . The node-averaged 	 velocities, 	 	
and 	 � , are similarly defined, as well.

Although the velocity (or its derivative) is frequently known on the boundary, pressure on the boundary is
typically not known and must be evaluated. Using an approach similar to the one used by Chen [3] in the
diagonal Cartesian method, an equation for the transverse-integrated pressure on the diagonal surface,

� � ���	 
 ,
is obtained using the continuity equation. The derivation of this scheme for pressure on the boundary can
be found in [14].

The development above corresponds only to one type of wedge-shaped node. In practice, four types of
wedge-shaped nodes are required to discretize any arbitrary geometry in two spatial dimensions. The
remaining types of wedge-shaped nodes are described in [14]. The hybrid NI-FAM for these remaining
wedge-shaped nodes are developed in the same manner as the derivation outlined here.

3. NUMERICAL RESULTS AND DISCUSSION

The test problem solved using the hybrid NI-FAM for the Navier-Stokes equations is that of flow inside an
enclosed five-sided cavity, shown in Fig. 4. In this problem, the bottom of the cavity moves to the left with
a constant velocity, while the remaining four sides are stationary. This problem is similar to the classical
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problem of flow inside an enclosed square cavity in which the top plate moves with a constant velocity to
the right [2] [6] [9]. In both, this problem and the classical problem, the shear created by the moving plate
leads to steady-state recirculating flow for low Reynolds numbers.

 

�

�

� �

�
�

�

Figure 4. Schematic digaram of the five-sided cavity

In Fig. 4, the line segments, OD and CD, have a length of � � � , while the segments, OA and BC, have a
length of �	� ! � � ��
 . The segment AB forms a

� 
 	 angle with the horizontal. No slip boundary conditions
are imposed on all five walls. Hence, Dirichlet boundary conditions of � �	� are imposed along segments
OA, AB, BC, and CD, while the velocity along segment OD is equal to the velocity of the bottom plate, � .
Furthermore, the pressure values on all five walls are treated as unknowns.

Using a constant bottom plate velocity of � � � , the flow field is simulated using the NI-FAM on three
meshes of varying resolution. The details of the specific meshes are summarized in Table I. Mesh A is
the coarsest mesh with 85 parallelepiped nodes and 5 wedge-shaped nodes, while mesh C has the highest
resolution with 1390 parallelepiped nodes and 20 wedge-shaped nodes. The Reynolds number for these
simulations is defined as ��� ������ � 


� . A steady-state flow distribution is calculated on these meshes by
assuming quiescent initial conditions

� � � 	 � � ��� � and marching in time until a non-transitory solution
is reached. In this problem, the final time,

�
� , at which a non-transitory flow field develops is dependent on

the node size of the mesh and the time step used. The specific final time and time step used for each flow
simulation is summarized in Table II.

A flow simulation on mesh A for a Reynolds number of ��� � � was performed first, although these
results are not presented here. At such a low Reynolds number, it is expected that the velocity distribution
in the enclosed cavity follow the outline of the cavity without producing any secondary vortices. These
expectations are confirmed.

The results of the flow simulations for higher Reynolds numbers are shown in Figs. 5-8. Results are reported
for flow simulated on meshes A and C at Reynolds numbers of ��� � � � � and ��� � � � � � , respectively. For
mesh B, results are reported for both Reynolds numbers. In these figures, two flow maps are presented for
each simulation. In order to view the structure of the flow field clearly, velocity vectors of constant length
are used in the top flow maps. The variation in the speed of the flow field is represented in the bottom flow
maps where the velocity vector lengths are proportional to the magnitude of the velocity.

When the Reynolds number is ��� � � � � and larger, the flow field becomes more complex producing a
primary vortex that occupies a large region of the cavity and a secondary vortex that is situated near the top
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Table I. Mesh specifications for the five-sided cavity problem

Mesh � � Number of wedge- Total number
shaped nodes of nodes

A � � � 
 � �
B � � � 
 � � % 
 

C � � � ! 
 ! � � � � �

Table II. Final times and time steps

Mesh ��� Final Time �
�

A
� � � ! � � � ��


B
� � � ! � � � � ! 


B � � � � ! 
 � � � � & ! 

C � � � � � � � � � � % � ! 


of the cavity, as shown in Figs. 5-8. This secondary vortex, has an oblong shape and is accompanied by a
well-defined flow separation point on the right boundary. Although the secondary vortex is relatively large,
the speed in this vortex is significantly smaller than the speed of the primary vortex, as indicated in Figs. 5-8
by the smaller arrows near the top of the cavity. Similar flow separation patterns have been reported by Darr
[4] in trapezoidal cavities.

To analyze and compare the NI-FAM predictions, the center of the primary vortex and the location of
the flow separation along the right boundary have been calculated. These points can be determined by
using linear interpolation to calculate where the

�
and 	 velocities become zero. These calculations are

summarized in Tables III- IV.

Figure 5 shows the flow maps for the velocity distribution calculated on mesh A. Figure 6 shows the corre-
sponding flow maps for mesh B. � The flow structure predicted by the NI-FAM on mesh B in general agrees
with the flow structure calculated on mesh A. However, as indicated in Table III, the simulation carried out
on mesh B predicts the center of the primary vortex to be higher than that predicted by mesh A. Morever,
the results in Table IV show that the location of the flow separation on the right boundary of mesh B is
closer to the top wall, which suggests that the secondary vortex as predicted on mesh B is slightly smaller.
Figure 7 shows the flow maps for the velocity field as calculated on mesh B for a Reynolds number of
��� � � � � � . At this higher Reynolds number, the general structure of the flow field is similar to the flow
field at a Reynolds number of ��� � � � � . However at ��� � � � � � , the separation point has moved further
down the right boundary indicating that the size of the secondary vortex at ��� � � � � � is significantly larger
than the secondary vortex for ��� � � � � . In Fig. 8, the flow maps of the velocity field as predicted by the
NI-FAM on mesh C for a Reynolds number of ��� � � � � � are shown. � The flow structure predicted by the
NI-FAM on mesh B is very similar to the flow structures predicted on mesh C. The location of the primary
vortex as well as the separation point predicted by the NI-FAM on mesh B are very close to those predicted
on mesh C, which suggests that the resolution of mesh B is adequate.

�
The arrows in Fig. 5(b) that are of the same size as the arrows in Fig. 6(b) do not represent the same speed.�
The arrows in Fig. 7(b) that are of the same size as the arrows in Fig. 8(b) do not represent the same speed.
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Mesh A, Re = 400.0
Vector Length Proportional
To the Magnitude

(b)

Mesh A, Re = 400.0
Constant Vector Length

(a)

Figure 5. Flow maps for mesh A at ��� � � � � .

Mesh B, Re = 400.0
Vector Length Proportional
To Magnitude

(b)

Mesh B, Re = 400.0
Constant Vector Length

(a)

Figure 6. Flow maps for mesh B at ��� � � � � .
Table III. Location of primary vortex center

��� Mesh A Mesh B Mesh C
� � � � � ��
 � � � � � % � � � � � ��
 � % � � � % � & � �

� �
� � � � �

� � � � � � � % � � � % & � � � � � ��� ! � � � % & �
�

Table IV. Location of flow separation
��� Mesh A Mesh B Mesh C
� � � � ��� � & � ! � ��� � � � �

�
� �

� � � � �
� � � ��� � & ��� � ��� � & % �

To confirm the existence of the secondary vortex in the five-sided cavity and to independently verify the
predictions of the NI-FAM, the flow in the enclosed cavity is simulated using the commercial computational
fluid dynamics software package, CFX. The results of the CFX calculations for Reynolds numbers, ��� �� � � and ��� � � � � � are presented in Figs. 9 and 10 respectively. (The “white strip” that runs from the top
of the cavity to the bottom left corner in Figs. 9 and 10 is an artifact of the block generation and subsequent
mesh generation algorithm in CFX.) The flow fields calculated by the NI-FAM and those predicted by CFX
for these two Reynolds numbers agree quite well with each other. It should be noted that although the NI-
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Mesh B, Re = 1000.0
Vector Length Proportional
To Magnitude

(b)

Mesh B, Re = 1000.0
Constant Vector Length

(a)

Figure 7. Flow maps for mesh B at ��� � � � � � .

Mesh C, Re = 1000
Vector Length Proportional
To Magnitude

(b)

Mesh C, Re = 1000
Constant Vector Length

(a)

Figure 8. Flow maps for mesh C at ��� � � � � � .
FAM predictions on meshes B and C are consistent with the CFX results, the flow field calculated by the
NI-FAM on mesh A is less accurate as indicated by the slightly lower location of the primary vortex. Clearly,
the node size of the mesh A ( � � � � � � ) is too coarse for a Reynolds number of ��� � � � � . Although mesh
A is too coarse to produce quantitatively accurate results, the flow field is nevertheless qualitatively correct.

Figure 9. CFX results for ��� � � � � Figure 10. CFX results for ��� � � � � �
In Fig. 11, the transverse-integrated

�
velocity,

� � �
, along the vertical line passing through point S of the

cavity at a Reynolds number of ��� � � � � is shown. In this plot, the transverse-integrated velocity,
� � �

, is
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plotted against the � coordinate of the center of the respective node. Furthermore, the results for mesh D,
which is a high-resolution mesh that uses a node size that is half the node size of mesh C, are shown in the
velocity profile, as well. Since meshes C and D have relatively high degress of resolution, a Richardson
extrapolation can be performed using the flow fields calculated on these meshes. In [14], it is shown that the
NI-FAM for the convection-diffusion equation is not quite second order, but much better than first order. To
determine the order of the NI-FAM numerically, two sets of Richardson extrapolation are performed — the
first set assumes that the NI-FAM is first order and the second set assumes that the NI-FAM is second order.
In the first set, a second order extrapolation is obtained, while a third order extrapolation is obtained in the
second set. These extrapolations are also shown in Fig. 11.

In Fig. 11, the velocity profile calculated on mesh A is clearly inaccurate, however, the general structure of
the profile qualitatively agrees with the other velocity profiles. In addition, the velocity profiles calculated
on meshes C and D match more closely the third order extrapolation than the second order extrapolation.
This suggests that the NI-FAM is indeed close to being a second order method in � and � . In Fig. 11, it is
also clearly evident that the velocity profiles converge to a single velocity profile as the meshes are refined.
As expected, a similar analysis using the velocity profile for the transverse-integrated 	 velocity along the
vertical passing through point S of the cavity yields results consistent with those discussed here.

Figure 11. Transverse-integrated
�

velocity (
� � �

) along the vertical line passing through point S of the
cavity for ��� � � � � .

4. CONCLUSIONS

The hybrid nodal-integral/finite-analytic method has been extended to solve the time-dependent, incom-
pressible Navier-Stokes equations in two-dimensional arbitrary geometries. For the test problem of viscous
fluid flow in an enclosed five-sided cavity, the NI-FAM predicts the existence of a secondary vortex near
the top of the cavity accompanied by a clear flow separation point along the right boundary for Reynolds
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numbers of ��� � � � � and ��� � � � � � . This flow structure inside the five-sided cavity is confirmed by cal-
culations using the commercial software package, CFX. The results of this test problem clearly demonstrate
that the NI-FAM is an accurate numerical method capable of simulating (laminar) fluid flow in complex
geometries using relatively coarse meshes.
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